PAGE
24

A Discussion in Penetration Testing

Marcial White

University of Advancing Technology

NTS330 Internetworking Exploits and Hacking Overview

August 13th, 2005

I. Introduction

Even though personal computers have been moving toward the main stream for the last thirty years, there are still some who have never questioned how computers work. More specifically: what it is about how computers work that hackers want to exploit, which often yield negative reputations. The answer to this question is simple, but is quite difficult to illustrate without getting technical: simply, they write programs to make other computers do things that they are not meant to do. This generic definition opens up the term “hacking” in to many different connotations. There are two extremes in the hacking culture, dubbed the “white hats” and the “black hats”. The black hats are the ones that create the negative reputation for most hackers. For example, a black hat will use his knowledge to make a computer transmit sensitive files either back to them or to another remote location, by stealing information, breaking computer systems, or by writing viruses to manipulate other oblivious systems to perform a certain task, as defined by the virus writer. In contrast, are the white hats - the hackers in the information security industry that will usually perhaps tasks as simple as ensuring a network’s uptime, or something as complicated as writing an anti-virus solution. An interesting synergy that emerges between the white and black hats is akin to the relationship between stereotypical “yin and yang”. That is, one cannot exist without the other. The white hats will watch the black hats to find methods to fix exploits. The black hats then react and find exploits in the white hats’ code. The textbook definition of a hacker and their alignment seems pretty black and white until you consider this: what happens when a proclaimed black hat hacker is really just searching for bugs in other people’s code with the intention of alerting the software development team to result in a patch? Do they still adhere to the label of “black hat”? There is an entire community of programmers in the industry that contribute freely to code. This is the open source community. All code written as open source is freely distributed and analyzed by many eyes, a majority of which are never involved with the creation of the program, and are not employed to test the code. It is their hope to find bugs in software before the bug gets a chance to be exploited in the wild. In this case, is exploiting a program “wrong”? These answers tend to depend on the situation, and the manner in which the information gathered is disseminated. It is theses actions and intentions hackers pursue that determine their alignment. And whatever their alignment, all hackers need a methodology. Methodologies can be thought of as a tool used to exist as a hacker, and are integral for all niches of the hacking culture. For example, most penetration testing companies have a certain, complete and comprehensive list of steps that they follow during a penetration test. This makes their job easier because they can get used to a routine, but also because by using a checklist there is little chance that a known vulnerability is accidentally not tested for. We’ll examine a possible methodology that can be applied to either side of the white hat black hat spectrum, but more commonly illustrated in the white hat penetration testing industry.

II. Penetration Testing Concepts

The idea of a penetration test is to examine the policies and technologies employed within a corporation for flaws that would allow dissemination of sensitive or otherwise restricted data. This includes examining potentially vulnerable technological controls like hardware implementations and configuration, software implementation and configuration, security policy audits and weaknesses in the company’s structure. A penetration test will include border network testing, interior network testing, corporate footprinting, software configuration auditing, security policy auditing, and social engineering. A majority of a penetration test will be on the networks, but it is important to keep in mind the fact that all corporations leave a footprint in the public’s eye, and this footprint will often disseminate enough information to break into that company. There are two types of approaches to use when considering a penetration test (pen test). The first approach is called the “black box” approach. This type of test is conducted with absolutely no prior knowledge of the interior network. The tester will usually receive nothing more than an IP address, and it’s up to the tester to document all findings. The other type of approach is called the “white box” approach. In this case, the entire structure of the network is provided before the test is conducted (Rivest). Both approaches have their pros and cons, and the best method to use depends on the situation and often times the budget for the project. Black box testing is useful to see what a hacker would do to gain access to a network, but relies of the skills of the pen tester. This method will often yield information on vulnerabilities that were never addressed by the corporation’s IT department, but if the tester is not as skilled a hacker as the next tester, the pen test will only include the few techniques and exploits that are within the tester’s realm of knowledge. Also, because extra research must be done in order to get an idea of the vulnerabilities available on a network, and because time is money, this approach is usually more expensive. The concept of white box pen testing is that it allows the hacker to examine the network for vulnerabilities without actually logging into the systems. This also allows a pen test to be conducted much faster, as there is less time (and thus less money) spent on research and more time spent on actual testing. However, this approach requires that the network diagram is complete and current. Any flaws in the network diagram may compromise the test. Whether the black box or white box approach is employed, every penetration test should start with research.
III. Footprinting

The concept of footprinting is two-fold. First, all machines connected to the internet both directly and indirectly must be accounted for, as these are the machines that create the organization’s “footprint”. Second, a footprint is the view of the corporation from the public’s eye. If this corporation has ever been indexed by a search engine, reported in a newspaper or magazine or had an administrator ask a question about problematic services on a public message board, there will be information readily available with the right searching. All of this information is essential to document during a penetration test.

Search engines provide a simple way to scour the internet for all pertinent information on the target organization. Each search engine has its own proprietary searching algorithms that provide different results per query. Because of this difference of results, many have become accustomed to the way certain algorithms work, and thus become dedicated to that search engine. Effective search engines for penetration testing include http://www.google.com, http://www.yahoo.com, http://www.teoma.com, and http://www.alltheweb.com. One weakness of these search engines is the fact that web sites that are no longer on line are no longer accessible. If there is information residing on a defunct web site that may be of use, there is a possibility of it being listed on http://www.archive.org. With a little knowledge, a little imagination, and a lot of patience, all data ever documented involving the target can be found.

IIIa. Search Engine Hacking

The proprietary strings utilized in each search engine can produce profoundly different results. Each of these proprietary search strings basically operate in similar fashions, but can be used very differently. For example, using Google hacking, it’s possible to pull potentially vital information on username and passwords from within a specific domain within seconds. Some of Google’s search strings include options such as “site”, “filetype”, and “inurl”. The “site” string will tell Google to search for information only indexed within a specific second level domain name (such as uat.edu). The string “filetype” will search for files of a specific type within the search query (such as “xls” or “txt”). The string “inurl” tells Google to search for the string within the URL of the destination file (Granneman). To illustrate this concept, consider the Google string: “filetype:txt inurl:robots site:whitehouse.gov”. This returns the robots.txt file listed with http://www.whitehouse.gov. The robots.txt file is the file that suggests house search engine bots should treat certain domains. The problem is that this is simply a suggestion, and is not necessarily what a bot will do. Many more details and search engine concepts are available at http://johnny.ihackstuff.com/.

IIIb. Social Engineering

Social engineering is defined as “The practical application of sociological principles to particular social problems” according to http://www.dictionary.com (Lexico). More applicable to penetration testing, social engineering can be stretched to be defined as “the practice of obtaining confidential information by manipulation of legitimate users” (Wikipedia). This technique has proven useful in many situations where corporations do not employ sufficient security policies. For example, one penetration testing team reported they gained access to the server room of their target, by simply asking random employees to grant them access. Of course, the security policy of the target was heavily reconstructed (SecurityFocus).

In other instances, social engineering can be something as simple as a small email “phishing” scheme, to something as complex as the arguably :largest-scale social engineering attack in years” scheme employed by Microsoft to raise money from the Microsoft Plus! Software. In this scheme, the author of the software Patchou added an adware sponsor as part of the software installment. While there was the option to not install this adware available, a majority of the users simply agreed to the EULA without reading it, thus agreeing to and installing the adware (Wikipedia). Social engineering can also include posing as electricians, posing as the telephone or cable company, dumpster diving to find vital information, or getting a job as a lower level position that normally wouldn’t be suspected of stealing information, like a janitor or mailroom clerk.

Social engineering can be manifested in many different forms, and is not limited to computer security. Kevin Mitnick is one of the most famous social engineers to date, and has published numerous books and articles on why social engineering is possible, and explains some of the situations he’d found himself in as a social engineer. Some of his publications include “The Art of Deception” and “The Art of Intrusion”. More information is available on his website, http://www.kevinmitnick.com.

IIIc. White Box Footprinting
White box penetration tests will provide the information on the exterior network that will be visible to the world via the internet, which may include documents detailing source code, manuals, circuit diagrams, and network diagrams (New Horizons). The machines facing the internet will most often include web servers running Microsoft’s IIS or the open-source Apache, authentication machines like RADIUS or TACACS servers, and in some higher security situations, honeypot software. It is typically a good idea to scan the network(s) involved with the target at this point, and compare the results with the network diagrams. Any points of entry that were not previously listed on the network diagram must be documented and reported, and if this is the case its likely that there are other points of entry not documented that need to be found during the penetration test. To find external points of entry, a ping sweep can be conducted with a tool like fping (fping) or ICMPenum (ICMPenum). This type of scanning is actually considered a bit over-intrusive for this phase, but any information that doesn’t match up with provided documents should be caught here. Figuring out that there are holes in the network diagram earlier in the pen test will make things easier later on.

IIId. Black Box Footprinting

 A black box approach will typically begin with a single IP address, and it’s up to the tester to find the rest of the points of entry. Also, with a single IP it’s still possible to conduct research on the owners and registered administrators. This is made possible because every IP address assigned on the internet is required to have been documented by a few sources. These sources include ARIN.net (the American Registry for Internet Numbers), a Whois search (available at most registrars, and tool sites like http://www.centralops.net, and http://www.samspade.org), using NSLookup (to obtain additional information on domains\IP addresses associated with the target), conducting traceroutes (to tell you what machines\routers the traffic in to and out of the network is meeting prior to being received at the target’s network), and by properly utilizing combinations of programs like VisualRoute (http://www.visualroute.com/) and EMailTrackerPro (http://www.emailtrackerpro.com/), a corporation can actually use some or all published information in a legal repudiation case (EC-Council).
IV. Enumerating the Network

The next step is to scan the IP that you’ve been provided, and any additional IP’s that seem of interest after the WhoIs and DNS zone transfer search. First, we could do a ping sweep using a program like fping (fping) or ICMPenum (ICMPenum). This tells us what machines in the IP ranges are online. Using more sophisticated programs, like NMap (NMap), it may be possible to identify services and operating systems running on each host. If this information is easily gathered, it may present a simple way into the network. It’s important to remember that there are many configuration techniques becoming more widespread in use. For example, many administrators have figured out that some information can be hidden from an NMap scan by simply denying a reply to ICMP type-8 ping requests. NMap will natively try to ping a host before it scans to make sure it is on line. If a host is online but not replying to ping requests, NMap will report it as off line. To avoid this, the –P0 switch will instruct NMap to leave out the initial ping, which may return some more useful results in the scan. Another useful NMap switch is the XMAS scan. This switch (-sX) sends the host a packet with the FIN, URG, and PUSH flags set. The name comes from the alternating bits set on (these bits are 00101001), and some seem to think the alternating bits resemble Christmas tree lights (Network Uptime). A successful XMAS scan will find one of two things: a closed port on a host will reply with RST, while open ports lay conspicuously silent. Many other types of scans are possible with NMap, and details are available if you run the program without any instructions (or in the man pages). As with all the [image: image1.png]steps in a penetration test, documentation is essential. During the enumeration phase, an effective tool to use is the Fe3d network visualization tool, available at http://projects.icapsid.net/fe3d/. This tool was built to utilize Nmap scans that have been output as XML files, and is illustrated to the right. The more documentation you are able to present at the end of the test, the more valuable your test is to the target organization.

Now, the test becomes a bit more intrusive as we try to enumerate the network’s vulnerabilities and\or user accounts. The point of this phase is to list user accounts, open file shares, and identify the applications running, to either find a point of entry (i.e. file share), or means of authentication (i.e. usernames). This can (and usually will) overlap with the last step, but builds more information for us to work with. The more information we have, like documentation the better. The result of this test and the methods by which this test is conducted greatly relies on what was found in the previous phase. For example, let’s say we used Nmap to scan a host and were presented with a list of running services that include Squid, Samba, Qmail, and Apache. It’s pretty safe to assume the machine is a Linux\Unix distribution (or someone is going out of their way to trick you), because the services running are usually not found on Windows machines. An obvious Windows scan would include services like Netbios, ASP, or IIS. Nmap is a very useful tool, but there are many other tools to use at this stage like DumpACL (DumpACL - most recently referred to as DumpReg), and sid2user (sid2user). Both of these programs are attempts to gain a means of authentication.
[image: image2.jpg]During any connection using Transmission Control Protocol, a handshake will have taken place, and many services will display a banner when you attempt to connect to that service. These banners usually include information on the service that you are trying to connect to, and some times this information will reveal a point of entry. For example, if one tried to connect to a machine via telnet, the banner displayed might include the software and version number running on the server, as is illustrated below. This particular example is running vsFTPd 1.2.1. With this information, search engines like google.com become of use again. With a quick search for the software and version number on Google, and a few other security related sites like http://securityfocus.com, http://astalavista.com, and http://packetstormsecurity.com, its obvious there are little problems with this software. If you are unable to find useful information on these sites, it’s likely there is no major vulnerability in the software, and that this service need not be altered for reasons of security. Refer back to your Nmap scan for alternative running services to look to for access. Banner grabbing is a very elementary way of checking for the running service, as this information should have been found in the portscan, but provides another means of documentation. Most software that displays a banner when users connect can be configured to display any specified text. This configuration is one that many administrators overlook.
[image: image3.jpg]Another useful tool for this phase is the Nessus tool. Nessus is an open source vulnerability scanner that can be used remotely to test for vulnerable services. It requires minor configuration prior to use, and once it is registered, can prove to be one of the most powerful tools in a pen tester’s toolbox. Nessus utilizes a particular scripted language, appropriately names “Nessus Attack Scripting Language”. Plugins can be written for Nessus using this scripting language for virtually any situation a pen tester (or any network administrator) may find themselves in, making Nessus one of the most flexible tools available. After this tool is run, it will display a report of all vulnerabilities found on each of the hosts in the target range. With the results, consult the search engines and security web sites for ways to exploit the vulnerabilities found in the scan. The Nessus program, and additional documentation is available at http://www.nessus.org.
This phase is where much of the project comes together, and by the end of this phase your points of entry should be clear.

V. Gaining Access

At this point, the services, software, and operating systems in use on the network should be known, and the points of entry have been identified. The next step is to actually gain access. Because we know what servers, services and users are in use on the network, we can start looking for authentication mechanisms like passwords. A good place to start is to sniff traffic with your favorite protocol analyzer like Ethereal (ethereal), tcpDump (TCPDump), or snort (snort). If a password is extracted in this way, you can move on ahead to escalating your privileges.
Brute forcing passwords for file shares is a popular vulnerability with Windows systems, although recent releases of the operating system and service packs have made the out-of-the-box vulnerabilities rather inaccessible. The Nessus scan and the NMap scan conducted in the previous phases may have already located the file shares open for intrusion. However, there are specific port scanners that may help during this phase. Xprobe2 (Xprobe2) is a tool designed to look for SMB, SNMP, and LANMAN traffic, to conduct a fairly accurate operating system fingerprinting. For Windows NT 4.0 systems, readSMB (ReadSMB) can be a useful tool to sniff traffic and get a list of passwords sent across the wire for a certain period of time. This program will output by default (not verbose) in a way that can be read by L0phtcrack, to show the password in clear text. NT Info Scan is a great tool for Windows NT users to enumerate, attempt to brute force, and display usernames in an html page as an auditing service (NT Info Scan). If an unfortunate network administrator’s user account gets cracked by a brute forcer, then you need not worry about escalating your privileges – you’d have all the privileges you needed! Privilege escalation is necessary for any other account that may have been compromised, if they do not have sufficient privilege to manipulate the integral systems of the network.
VI. Escalating Privileges

[image: image4.jpg]
Escalating privileges requires that we know the user account that we want to escalate privileges for. Once we have the username, we could try to crack the password using programs like John the Ripper (John the Ripper), Cain and Abel (Cain and Abel), or L0phtcrack (version 3 is illustrated to the right) (L0phtcrack). Once a local account has been obtained, the privileges of that account need to be escalated. For older versions of Windows (NT 4.0, which, oddly enough are actually still in use in the industry), the Microsoft getadmin exploit has proven to be a popular venue of access in the past. This exploit was reported to Microsoft in 1997, and was immediately patched. Within a few hours of Microsoft’s patch being distributed, the patch had been exploited (Sobolev). Using a social engineering tactic like a phishing scam within the target’s email distribution lists, a Trojan program like Netbus or Sechole can provide a simple way into the systems for local account access (Netbus). Netbus was released originally as a backdoor virus into remote systems, but is most recently being distributed as a “Remote Administration and Spy Tool” (Internet Security Systems).

Most networks implemented in corporate structures will have directory service running, like Windows Active Directory (AD), or Lightweight Directory Access Protocol (LDAP) implemented on some Unix\Linux networks. These directory services create and utilize trust relationships between integral machines within the network, like application servers and remote authentication systems. Intercepting these trust relationships between integral services on a network may be an avenue into a network, and will typically yield immediate privileged access. This can be accomplished by staging a man in the middle attack. This type of attack is made possible by an inherent flaw in the concept that materializes the transmission control protocol (TCP), which comprises a majority of communication between hardware in use on the internet today. In order for TCP to be relatively secure, it is required that a three-way handshake be conducted. That is, a request for a connection is sent from a host to a server, the server responds with an acknowledgment with the request noted, and the client sends a final handshake packet officially establishing the connection, then proceeds to send the packets involved with the transfer of information. Every host that makes a connection with a server is recorded in an Address Resolution Protocol (ARP) cache. This protocol translates IP addresses to MAC addresses and vice versa, and all transactions are recorded in the cache. By sending specifically crafted packets to the server resetting and setting the ARP cache to point to a remote machine, it may be possible to trick the server into sending legitimate traffic (including authentication traffic) to the remote machine. These packets can be crafted using a tool like Ettercap (Ettercap).
 After gaining a local account (not necessarily privileged) on a Unix\Linux system, editing the rhosts file to accept your username and password will grant access (IBM), or a program like LSA Secrets could be used for Windows machines (LSA Secrets). Now that you are inside the network, you could also just sniff for passwords of user accounts with the right privileges on the systems of interest.

This is one of the phases that requires gains the most attention, as this is the most intrusive part of a penetration test. As a penetration tester, it is important to analyze and practice this phase. A simple way of practicing is to participate in organized hacking events with variable targets, many times following traditional rules of “Capture the Flag”. During a capture the flag game, once you get access to the right system, there is typically a file that needs to be altered, or the ownership changed on to prove you gained access to the system.
Once local privileged access has been gained, it is important to erase your tracks so that no one is able to pin point the attack vector. Every good penetration test will occur without the target even knowing it.
VII. Cover Your Tail

Covering your tracks is an important phase of a penetration test. In the industry, one of the only ways to get caught hacking is by leaving conspicuous clues as to the attack vectors, which usually lead to information discerning the physical location of a hacker. It is equally important that, as an administrator, certain rules are followed in the event of an incident such that no evidence is tampered with or deemed unreliable in court. But, like they say – it’s not illegal if you don’t get caught! On a properly configured system, there should be many sources that point to the attack vector that a hacker uses to gain access to a system or network. Be sure to clear all the logs that are available on a system, like the command history per user, the ftp\telnet\ssh\service used to get into a system in the process’s logs, and be sure all IP information is removed from the routing tables in the routers. Specifically for Unix\Linux, make sure you disable the logging daemon (popular logging software implemented today include klogd and metalog), and edit yourself out of the logs (usually located in or around /var/log, /etc/ or /usr/bin/. Also, if tools were installed to escalate privileges or monitor traffic, be sure that they are not found. Any rootkits and other alternate forms of communication should be hidden from antivirus system scanners and users (Cra58cker). This is made possible on Windows systems by making the program files hidden system files. In Unix, you can make a hidden file or folder by prepending the filename with a dot. For example, if there is a directory called “/rootkits”, you could change the filename to “/.rootkits”. This will hide this file from a standard list command, but there are flags that can be used to show these files. There is also another technique where you can make a Unix Samba share a “veto file”. When configured correctly, a veto file will not be visible to a user, and the directory that it resides in cannot be deleted. (O’Reilly & Associates). More information on manipulated Samba shares is available in the excellent book, “Using Samba” from O’Reilly. As a last resort, files can also be hidden by simply burying the rootkit as deep in the system as possible. Using this method, it’s simple for software to be misplaced, so it may be a good idea to take note of the location of the software on a system. If the situation requires prompt access in the future, be sure the software is both hidden, and readily accessible by the intended party.
VIII. Keep Your Doors Open

To ensure that there is a consistent means of abstracting privileges again in the future at a given moment, rogue user accounts (which should be a red flag to any administrator, but then again if all administrators were looking for these kinds of things, penetration testing wouldn't be necessary!) can be created. Using a privileged account, rogue accounts can be made with privileges, and can be made to belong to different groups on the system.
VIIIa. Creating Rogue User Accounts

In *nix, user accounts with the right permissions can mean the world. User accounts with incorrectly set permissions can also mean the world. These operating systems employ a user account management scheme using groups. If a user belongs to a certain group, and that group has permissions to a specific resource, the user inherently has permissions to that resource as well. A few important groups to keep in mind are root, wheel, and nobody. The root group is used for the single all-powerful username that has complete control over the system. This user account should have a strong password, and should only be used to perform maintenance on the system. If an administrator uses this account too frequently and generously (for example checking email or generating reports), there is a larger chance that the password can be compromised, or that a virus is contracted with the privileges of root. The wheel group contains a list of the users on the network that are able to use root’s password. This is another group that should not be frivolously used, and any resource that is owned by this group can affect system performance (Lucas). The nobody group is an interesting anomaly, as it was originally intended to be a user that owns no files, and is used as a default user for unprivileged operations. This is dangerous because it allows programs to be run as long as they lack the right permissions. Furthermore, if a user gains permissions to run programs as a member of the nobody group, other programs may aid them in escalating their privileges. Each of these groups has a special group ID number (GID). Root, wheel, and nobody are by default 0, 0 and 60001, respectively (Unix.org). Depending on the situation, it may be a good idea to join an existing group, or create a new one. If there are many groups configured on a system, adding one more may not alert the administrators. When adding users to an existing group, it’s a good idea to use names that don’t throw red flags to the administrators. For example, if a remotely accessed machine establishes a connection with a user, a connection type of “tty” is recorded. Creating a user account called “tty” may trick an administrator into thinking the traffic generated is legitimate.
VIIIb. Retaining Control
It is also possible to schedule batch jobs (otherwise known as “cron jobs”, in *nix) to reinitialize a service that grants access, infects startup files, loads program, plants remote control services like netcat or VNC, installs keyloggers like RegLoad (RegLoad) for Windows, or LKL (Linux Keylogger) (LKL), or even replace commonly used applications with Trojans that launch programs in the background to give you permissions. These key loggers will allow the remote recording of every keystroke pressed on a keyboard during a given session. After a keylogger has been installed, the output can be configured to do practically anything, from dumping the text to an FTP site, to packaging and emailing the recorded session silently.
[image: image5.png]
The keylogger “RegLoad” is basically a piece of software that records all keystrokes and logs them to a file at c:/Windows/Regload.hlp, which can be viewed by a non-administrator on most systems. This program will also make a copy of itself in the Windows folder, and add itself to the list of items that starts up when you start your computer. In other words, this is very much spy ware and don’t install it on a computer that you don’t want to be infected! LKL – Linux Key Logger is a simply program that logged userspace key presses, and everything that is passed through the hardware port (0x60) of a system.
IX. Still Can't Get In?

There is one optional extremely black hat tactic to use in the case of an uneventful break in. Sometimes, when a hacker is just fed up with the tight security of a project or network, they might have no other options to consider than a Denial of Service (DoS) attack. This is an attack where the hacker sends multiple requests for connections to a server without completing the connection. This is usually the last resort to a hack, and cuts off legitimate traffic, thus the name Denial of Service. Since we are all white hat hackers, and would never dream of taking an entire system down just because we couldn’t hack it, we wouldn’t dream of taking a machine offline intentionally. However, it’s also important to remember that many systems are vulnerable to denial of service attacks, and sometimes these attacks can be mitigated by using certain countermeasures. There are two types of DoS attacks, which are made possible by flaws inherent again in the implementation of TCP, and with poor programming.

IXa. Resource Consumption
The first type of attack will attempt to consume a finite resource, and that resource will vary depending on the role of a machine. For example, a web server experiencing a DoS will receive more requests to establish a connection than it can handle, from either a single or distributed source. Because this type of attack is automated, there is little that legitimate users can do to establish a valid session. On a workstation, a DoS could be the absolute consumption of memory, CPU, or file handling, resulting in the user unable to complete their tasks on a computer. This is usually caused by a virus or related malicious program, but can also be the result of poor programming.
IXb. Poor Programming
The second type of attack is made possible when a vulnerability in a program or service

is exploited, making either the service to cease functioning, or making the system on which the service is running to crash. Many times this problem is due to variables created in the code that are not checked for scope, or payload. Accessing variables outside of what should be the scope of a function call can be dangerous, and opens the program up to more exploitation than a simple DoS.

IXc. Minimizing Impact

There are many ways to minimize the damage that these attacks can inflict, but much of the configuration possibilities rely on the operating system in use. FreeBSD is an operating system designed with much more security in mind than most other OSs. One method in use is the sysctl (8) command. With a few configuration changes to the configuration file (located at /etc/sysctl.conf), impact of a DoS is greatly reduced (Vig). These changes can be made to other systems, but methods vary. Examples of configuration for a FreeBSD machine are available at http://www.onlamp.com/pub/a/bsd/2004/06/24/anti_dos.html.
X. Conclusion

Now that you have successfully penetrated a network, it is important that all of your findings are sufficiently documented and reported to the hiring party. They are, after all, paying for you to tell them. In the case of a penetration test, there shouldn’t be any installing of Trojans and backdoors on their systems for obvious reasons, but it’s important nonetheless to know what these programs do and where they are normally stored so that pen testers can efficiently combat them. Also, with the black hat tactics described in this document, we all have to remember what we are trying to do: increase security and protect our objectives.

The current trend of penetration testing has to deal greatly with finding problems in networks, and requiring network administrators to work on patching or otherwise fixing those holes. It seems obvious that by offering a service to patch all of the vulnerabilities found during a test as this could make a team more useful to an organization, and it’s a form of job security - as a team, you’ll be able to charge more for your services. However, many define security not merely as a solution, but a way of life. With this in mind, if a pen testing team were to offer to bring a target’s systems up to date and the patches are either faulty or create an environment that the current administrators are unable to cope with, the penetration testing team will be to blame.

A successful network security professional realizes not only that they have the power to help masses, but the power to destroy them. This is a scary concept, but part of being a security professional is realizing that we can make use of the tactics black hat’s use to gain access to networks for white hat purposes. So please don’t go around breaking systems at your leisure. Please set up your own lab environment to test these exploits and programs out, and learn how they work so you can help the technology security industry grow.

XI. References (in order of appearance)
Author, Raymond Rivest (June 15 2004). What is black box/white box testing?. Retrieved July 17th, 2005 from http://www.faqs.org/faqs/software-eng/testing-faq/section-13.html
Author, Scott Granneman (March 9 2004). Googling Up Passwords. Retrieved August 17th, 2005 from http://www.securityfocus.com/columnists/224
Author, Lexico Publishing Group (n.d. 2005). Dictionary.com. Retrieved August 16th, 2005 from http://dictionary.reference.com/search?q=social%20engineering
Author, SecurityFocus (December 18 2001). Social Engineering Fundamentals, Part I: Hacker Tactics. Retrieved August 16th, 2005 from http://www.securityfocus.com/infocus/1527

Author, Wikipedia (August 16th, 2005). Social engineering (computer security). Retrieved August 16th, 2005 from http://en.wikipedia.org/wiki/Social_engineering_(computer_security)

Author, New Horizons Computer Learning Centers of Boston, MA (n.d. 2005). White-box Testing. Retrieved August 16th, 2005 from http://www.nhboston.com/EHC/faq.htm
Author, EC-Council (n.d. 2002). Ethical Hacking and Countermeasures. Retrieved August 16th, 2005 from http://www.eccouncil.org/EC-Council%20Education/ceh-course-outline.htm

Author, Network Uptime (n.d.). Secrets of Network Cartography: A Comprehensive Guide to nmap. Retrieved August 16th, 2005 from http://www.networkuptime.com/nmap/page3-5.shtml

Author, Konstantin Sobolev (July 4, 1997). The ever popular getadmin exploit. Retrieved August 17th, 2005 from http://www.insecure.org/sploits/NT.get-admin.kernal.hole.html

Author, Internet Security Systems (February 19, 1999). Windows Backdoor Update II: Netbus 2.0 Pro, Caligula, and Picture.exe. Retrieved August 17th, 2005 from http://www.securityfocus.com/advisories/532
Author, IBM (n.d.). .rhosts File Format for TCP/IP. Retrieved August 2nd, 2005 from http://publib16.boulder.ibm.com/pseries/en_US/files/aixfiles/rhosts.htm
Author, IBM.com (n.d.). Files Reference. Retrieved July 2nd, 2005 from http://publib16.boulder.ibm.com/pseries/en_US/files/aixfiles/rhosts.htm
Author, Cra58cker n.d. 2005). The Art of Rootkits. Retrieved July 2nd 2005 from http://www.totse.com/en/hack/hack_attack/theartofrootki173584.html

Author, O'Reilly & Associates, Inc. (n.d. 2001). Using Samba. Retrieved July 4th, 2005 from http://www.oreilly.com/catalog/samba/chapter/book/ch05_02.html
Author, Michael W. Lucas. (August 15th, 2002). Using Groups to Eliminate Root. Retrieved August 18th, 2005 from http://www.onlamp.com/pub/a/bsd/2002/08/16/Big_Scary_Daemons.html

Author, Unix.org. (n.d.). Practical Unix & Internet Security. Retrieved August 18th, 2005 from http://www.unix.org.ua/orelly/networking/puis/ch04_01.htm

Author, Avleen Vig (June 24, 2004). Preventing Denial of Service Attacks. Retrieved August 18th, 2005 from http://www.onlamp.com/pub/a/bsd/2004/06/24/anti_dos.html
XII. Tools (in order of appearance)
Fping. Thomas Dzubin (October 2 2002). Fping. Retrieved July 18th, 2005 from http://www.fping.com/
ICMPenum v1.1. Chief Gray Hat (n.d.). ICMPenum v1.1. Retrieved July 18th, 2005 from http://www.bindview.com/Services/razor/Utilities/Unix_Linux/icmpenum_readme.cfm?Print=1&
Nmap. Fyodor (n.d.). Nmap. Retrieved July 15th, 2005 from http://www.insecure.org/
Fe3d, no author (n.d.). Fe3d. Retrieved July 11th, 2005 from http://projects.icapsid.net/fe3d/
DumpACL, no author (n.d.). DumpACL. Retrieved July 13th, 2005 from http://www.somarsoft.com/
sid2user\user2sid, Evgenii B. Rudnyi (January 6 2005). Evgenii B. Rudnyi. Retrieved July 2nd, 2005 from http://evgenii.rudnyi.ru/soft/sid/

nessus, Renaud Deraison (n.d. 2004). Tenable Network Security. Retrieved August 16th, 2005 from http://www.nessus.org
netcat, Giovanni Giacobbi (February 27 2004). What is netcat. Retrieved June 29th, 2005 from http://netcat.sourceforge.net/

Ethereal, no author (July 22 2005). Ethereal. Retrieved July 15th, 2005 from http://www.ethereal.com/download.html

tcpdump, no author (July 14 2005). Tcpdump. Retrieved July 20th, 2005 from http://www.tcpdump.org/

snort, Martin Roesch (n.d. 2005). Snort. Retrieved August 17, 2005 from http://www.snort.org

Xprobe2, Sourceforge.net (n.d.). Xprobe2. Retrieved August 17th, 2005 from http://xprobe.sourceforge.net/
readSMB, no author (n.d.). no title, Retrieved July 2nd, 2005 fromhttp://mirror.etf.bg.ac.yu/openbsd/distfiles/l0phtcrack/readsmb.c
NT Info Scan, Church of the Swimming Elephant (n.d.). NetBios Tools. Retrieved July 6th, 2005 from http://www.cotse.com/tools/netbios.htm
John the Ripper, OpenWall Project (n.d.). John the Ripper password cracker. Retrieved July 10th, 2005 from http://www.openwall.com/john/
Cain and Abel, Mao (n.d.). no title. Retrieved July 2nd, 2005 from http://www.oxid.it/cain.html
L0pht Crack, @stake (n.d.). Retrieved July 2nd, 2005 from http://atstake.com/products/lc/
Netbus, Dark Eclipse (n.d. 2000). Retrieved July 17th, 2005 from

http://www.dark-e.com/archive/trojans/netbus/210/index.shtml
Ettercap, ALoR and NaGA (n.d.). Retrieved July 17th, 2005 from http://ettercap.sourceforge.net/
LSA Secrets, Paul Ashton (August 9th, 1997). Retrieved July 2nd, 2005 from http://www.insecure.org/sploits/NT.LSA.secrets.html
RegLoad Keylogger, Sourceforge.net (February 26 2003). Project: RegLoad Keylogger: Summary. Retrieved July 10th, 2005 from http://sourceforge.net/projects/regload-keylog/
LKL, Linux Key Logger, Beyond Security Ltd. (April 26 2003). LKL, Linux Key Logger. Retrieved July 10th, 2005 from http://www.securiteam.com/tools/5KP0S1P9PE.html

